MATH 1010A/K 2017-18

University Mathematics Tutorial Notes VI Ng Hoi Dong

Question

(Q1) Suppose $f:[0,2]\to\mathbb{R}$ is the continuous function defined by

$$f(x) = \begin{cases} \left(x + \frac{1}{x}\right)^{-1} & \text{, when } 0 < x \le 2\\ a & \text{, when } x = 0 \end{cases}$$

- (a) Find all the critical point(s) of f in (0, 2).
- (b) For each critical point, identify whether it is a local maximum of f, local minimum of f, or neither.
- (c) Find the value of the constant a.
- (d) Find the absolute maximum and absolute minimum of f on [0, 2].

(Q2) Find the absolute extrema (if they exist) of the function $f: [-2,2] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x^5 - 5x^4 + 5x^3 + 1 & \text{, when } -2 \le x \le 1\\ \frac{1}{x - 1} & \text{, when } 1 < x \le 2 \end{cases}.$$

(Q3) Let $g : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$g(x) = \ln\left(\frac{1+|x|}{1+x^2}\right)$$

for any $x \in \mathbb{R}$.

- (a) Find g'(x) if $x \neq 0$.
- **(b)** Find all local maximum point(s) (if any) of g.

(**Q4**) Define $f : \mathbb{R} \setminus \{\pm 1\} \to \mathbb{R}$ by

$$f(x) = \frac{x(x-2)}{\|x\| - 1\|}$$

for any $x \neq \pm 1$. Find all local minimum point(s) (if any) of f.

Answer

(A1) Note
$$f(x) = \left(x + \frac{1}{x}\right)^{-1}$$
 when $x \in (0, 2)$ and $f(0) = 0$.

(a) Then
$$f'(x) = -\frac{\left(1 - \frac{1}{x^2}\right)}{\left(x + \frac{1}{x}\right)^2} = \frac{\left(1 - x^2\right)}{\left(x^2 + 1\right)}$$
 for any $x \in (0, 2)$.

If f'(x) = 0 for some $x \in (0, 2)$, we can solve that x = 1 or x = -1 (rejected). Hence, the only critical point of f on (0, 2) is $\left(1, f(1)\right) = \left(1, \frac{1}{2}\right)$.

(b) There are two method:

(Method 1) Note that

X	0 < x < 1	x = 1	1 < x < 2
f'(x)	+ve	0	-ve

and hence, $\left(1,\frac{1}{2}\right)$ is a local maximum by first derivative test.

(Method 2) Note that
$$f''(x) = \frac{-2x(x^2+1)-2x(1-x^2)}{(x^2+1)^2} = \frac{-4}{(x^2+1)^2}$$
 for any $x \in (0,2)$.

Then, f''(1) = -1 < 0 and

hence $\left(1,\frac{1}{2}\right)$ is a local maximum by second derivative test.

(c) Since f is continuous at x = 0, we have $\lim_{x \to 0^+} f(x) = f(0) = a$. That is

$$a = \lim_{x \to 0^+} \left(x + \frac{1}{x} \right)^{-1} = \lim_{x \to 0^+} \frac{x}{x^2 + 1} = 0.$$

- (d) Note that f is continuous on [0,2] and differentiable on (0,2) with a critical point $\left(1,\frac{1}{2}\right)$. Also note that f(0) = a = 0 and $f(2) = \frac{2}{5}$. By comparing the value of f at 0,1,2, we know that absolute maximum of f is $\frac{1}{2}$ occur at x = 1 and absolute minimum of f is 0 occur at x = 0.
- (A2) Note that $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{x 1} = +\infty$, so f has NO absolute maximum.

Note that

$$f'(x) = \begin{cases} 5x^4 - 20x^3 + 15x^2 & \text{when } -2 < x < 1 \\ -\frac{1}{(x-1)^2} & \text{when } 1 < x < 2 \end{cases}.$$

Solving $5x^2(x-1)(x-3) = 5x^4 - 20x^3 + 15x^2 = 0$ on (-2, 1),

we have x = 0, x = 1 (rejected) or x = 3 (rejected).

Note
$$-\frac{1}{(x-1)^2} = 0$$
 has no solution on $(1, 2)$,

hence the only critical point of f is (0, f(0)) = (0, 1).

Compare
$$f(-2) = -151$$
, $f(0) = 1$, $f(1) = 2$ and $f(2) = 1$,

we know absolute minimum is -151 occur at x = -2.

(A3) Note that

$$g(x) = \ln\left(\frac{1+|x|}{1+x^2}\right) = \begin{cases} \ln\left(\frac{1+x}{1+x^2}\right) & \text{, when } x > 0\\ \ln\left(\frac{1-x}{1+x^2}\right) & \text{, when } x < 0 \end{cases}.$$

(a) Then we have

$$g'(x) = \begin{cases} \frac{1+x^2}{1+x} \frac{(1+x^2) - 2x(1+x)}{(1+x^2)^2} = \frac{1-2x-x^2}{(1+x)(1+x^2)}, & \text{when } x > 0\\ \frac{1+x^2}{1-x} \frac{-(1+x^2) - 2x(1-x)}{(1+x^2)^2} = \frac{-1-2x+x^2}{(1-x)(1+x^2)}, & \text{when } x < 0 \end{cases}$$

(b) Solving
$$\frac{1-2x-x^2}{(1+x)(1+x^2)} = 0$$
 on $(0, +\infty)$,

we have
$$x = -1 + \sqrt{2}$$
 or $x = -1 - \sqrt{2}$ (rejected).

Solving
$$\frac{-1 - 2x + x^2}{(1 - x)(1 + x^2)} = 0$$
 on $(-\infty, 0)$,

we have
$$x = 1 - \sqrt{2}$$
 or $x = 1 + \sqrt{2}$ (rejected).

Note that we can have

x	$x < 1 - \sqrt{2}$	$x = 1 - \sqrt{2}$	$1 - \sqrt{2} < x < 0$	x = 0
g'(x)	+ve	0	-ve	we do not know (even the existence)
x	$0 < x < -1 + \sqrt{2}$	$x = -1 + \sqrt{2}$	$x > -1 + \sqrt{2}$	-
g'(x)	+ve	0	-ve	-

Note that *g* is continuous on \mathbb{R} (why?) and differentiable on $\mathbb{R} \setminus \{0\}$.

By first derivative test, the only local minimum point of g is (0, g(0)) = (0, 0).

(Q4) Note that

$$f(x) = \frac{x(x-2)}{|x|-1|}$$

$$= \begin{cases} \frac{x(x-2)}{|x|-1|}, & \text{when } |x|-1 > 0 \\ \frac{x(x-2)}{1-|x|}, & \text{when } |x|-1 < 0 \end{cases}$$

$$= \begin{cases} \frac{x(x-2)}{x-1}, & \text{when } x > 1 \\ \frac{x(x-2)}{1+x}, & \text{when } 0 \le x < 1 \\ \frac{x(x-2)}{1-x}, & \text{when } -1 < x < 0 \end{cases}$$

$$= \begin{cases} \frac{x(x-2)}{x-1}, & \text{when } 0 \le x < 1 \\ \frac{x(x-2)}{1-x}, & \text{when } -1 < x < 0 \end{cases}$$

Then

$$f'(x) = \begin{cases} \frac{x^2 + 2x + 2}{(x-1)^2} & \text{, when } x > 1\\ \frac{3x^2 - 6x + 2}{(x+1)^2} & \text{, when } 0 < x < 1\\ -\frac{x^2 + 2x + 2}{(x-1)^2} & \text{, when } -1 < x < 0\\ -\frac{3x^2 - 6x + 2}{(x+1)^2} & \text{, when } x < -1 \end{cases}$$

By solving f'(x) = 0 (please write the detail yourself), we can only get $x = 1 - \frac{1}{\sqrt{3}}$.

Then we draw the table

	x	x < -1	-1 < x < 0	x = 0	$0 < x < 1 - \frac{1}{\sqrt{3}}$	$x = \frac{1}{\sqrt{3}}$	$1 - \frac{1}{\sqrt{3}} < x < 1$	<i>x</i> > 1
$\int f$	'(x)	-ve	-ve	don't know	+ve	0	-ve	+ve

Note f is continuous on $\mathbb{R}\setminus\{\pm 1\}$ and differentiable on $\mathbb{R}\setminus\{\pm 1,0\}$.

By first derivative test, the only local minimum point of f is (0, f(0)) = (0, 0).